Exercise 62

Find the absolute maximum and absolute minimum values of f on the given interval.

$$
f(x)=x-2 \tan ^{-1} x, \quad[0,4]
$$

Solution

Take the derivative of the function.

$$
\begin{aligned}
f^{\prime}(x) & =\frac{d}{d x}\left(x-2 \tan ^{-1} x\right) \\
& =1-2\left(\frac{1}{1+x^{2}}\right) \\
& =1-\frac{2}{1+x^{2}} \\
& =\frac{\left(1+x^{2}\right)-2}{1+x^{2}} \\
& =\frac{x^{2}-1}{x^{2}+1}
\end{aligned}
$$

Set what's in the numerator equal to zero, and set what's in the denominator equal to zero. Solve each equation for x.

$$
\begin{array}{rrr}
x^{2}-1=0 & x^{2}+1=0 \\
x=-1 & \text { or } \quad x=1 & x=-i
\end{array} \text { or } \quad x=i
$$

$x=1$ is within $[0,4]$, so evaluate f here.

$$
f(1)=1-2 \tan ^{-1} 1=1-\frac{\pi}{2} \approx-0.570796 \quad \text { (absolute minimum) }
$$

Now evaluate the function at the endpoints of the interval.

$$
\begin{align*}
& f(0)=0-2 \tan ^{-1} 0=0 \\
& f(4)=4-2 \tan ^{-1} 4 \approx 1.34836 \tag{absolutemaximum}
\end{align*}
$$

The smallest and largest of these numbers are the absolute minimum and maximum, respectively, over the interval $[0,4]$.

The graph of the function below illustrates these results.

